Abstract
To date, most studies of the use of laser beam induced current (LBIC) for non-destructive characterisation of photodiodes have been qualitative and/or empirical, due in part to the difficulty of isolating the influence of the large number of material and device parameters on which the LBIC signal is dependent. The development of methodologies whereby these parameters can be determined quantitatively from the LBIC measurements is important for the technique to gain wider acceptance. This work describes, for the first time, the specific experimental conditions under which some of the variable parameters can be eliminated, substantially reducing the complexity of the analysis. In particular, temperature dependence of the peak-to-peak LBIC measurements on p–n junctions is examined for the first time, revealing that a saturation state is reached at low temperatures. When measurements are performed under these saturation conditions, the peak-to-peak LBIC signal becomes independent of doping density and bulk recombination parameters, allowing other parameters including device geometry to be examined with less ambiguity. This concept represents a crucial step towards a quantitative procedure for extraction of p–n junction material and device parameters using LBIC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.