Abstract

Due to its mechanical flexibility, large bandgap and carrier mobility, atomically thin molybdenum disulphide (MoS2) has attracted widespread attention. However, it still lacks a facile route to fabricate a low-power high-performance logic gates/circuits before it gets the real application. Herein, we reported a facile and environment-friendly method to establish the low-power logic function in a single MoS2 field-effect transistor (FET) configuration gated with a polymer electrolyte. Such low-power and high-performance MoS2 FET can be implemented by using water-soluble polyvinyl alcohol (PVA) polymer as proton-conducting electric-double-layer (EDL) dielectric layer. It exhibited an ultra-low voltage (1.5 V) and a good performance with a high current on/off ratio (Ion/off) of 1 × 105, a large electron mobility (µ) of 47.5 cm2/V s, and a small subthreshold swing (S) of 0.26 V/dec, respectively. The inverter can be realized by using such a single MoS2 EDL FET with a gain of ∼4 at the operation voltage of only ∼1 V. Most importantly, the neuronal AND logic computing can be also demonstrated by using such a double-lateral-gate single MoS2 EDL transistor. These results show an effective step for future applications of 2D MoS2 FETs for integrated electronic engineering and low-energy environment-friendly green electronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call