Abstract

This paper proposes a shift register circuit integrated in in-cell touch display panels that achieves low power operation, low coupling noise, and high long-term reliability with 11 thin film transistors (TFTs) and two capacitors. A time division driving method is utilized to prevent the crosstalk of display signals into touch circuits, and two pre-charging nodes are employed to relieve the uniformity degradation of output signals caused by different stresses on pull-up TFTs. The proposed circuit activates a drain of the first pre-charging TFT only at display scanning periods, which reduces coupling noises and power consumption. In addition, an internal inverter is turned off for touch sensing operations, resulting in a wide range of threshold voltage shift compensation and low power consumption. SPICE simulation results with a low temperature poly silicon TFT model show that the proposed circuit compensates for the threshold voltage shift up to 17 V. In a 60 Hz full-HD display with a 120 Hz touch reporting rate, the noise level of the first pre-charging node is −16.78 dB in between 2.37 and −28.95 dB of two previous circuits, and the total power consumption for 160 stages is substantially reduced to 4.44 mW compared to previous approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call