Abstract

Leakage power accounts for an increasingly larger portion of total power consumption in nanometer technologies. Battery powered devices remains idle for most of the time except when in use. However, since the phone remains on, it drains power from the battery. This in-turn reduces battery life. In such a situation, battery power can be saved by shutting downthe power supply to the circuit when not in operation. This paper proposes ultra-low power Carbon Nanotube Field-Effect Transistor (CNTFET) based SRAM cell to minimize static power dissipation due to leakage. A Sleep Transistor technique is applied to CNTFET based SRAM cell to reduce leakage power. This method reduces leakage power by dynamically disconnecting supply during inactive state. The 6T SRAM cell circuit using CNTFETs was simulated in HSPICE using Stanford CNFET model at 32nm technology node. The results shows that this method reduces leakage power by 31.5% compared with conventional 6T CNTFET SRAM Cell with minimal area overhead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.