Abstract
This paper describes an effective characterization technique developed for low impedance extraction of the power delivery network (PDN) in today's high-speed digital applications. Sub-milliohm impedances across almost DC to tens of MHz can be measured accurately on a microprocessor substrate with cutting edge design of the decoupling scheme. Compared to the conventional solutions of getting transfer-impedance obtained by 2-port vector network analyzer (VNA) measurement data, gain-phase test port provided by commercial RF network analyzer is utilized due to its ground loop error elimination architecture. An exercise to optimize locations of excitation probing point and receiving probing point is shown to minimize potential spurious coupling through via loops in a typical flip chip substrate. The accuracy of this low impedance characterization method is further demonstrated by first order modeling of the equivalent series resistance (ESR) & equivalent series inductance (ESL) of a PDN with surface-mounted and embedded discrete chip capacitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.