Abstract
Power and bandwidth efficient noncoherent transmission over frequency nonselective Ricean-fading channels is studied. We propose a low-complexity receiver structure, which is very well suited to mobile communication scenarios with time-variant and nonstationary transmission channels. Applying bit-interleaved coded modulation with standard convolutional codes, substantial gains of several decibels in power efficiency compared to conventional differential detection are achieved. To obtain the novel noncoherent reception scheme, ideas of iterative decoding with hard-decision feedback and prediction-based branch metric calculation are combined and extended. Furthermore, the incorporation of combined phase and amplitude modulation for high bandwidth efficiency is focused on. The theoretical analysis of both the convergence and the achievable performance of iterative decoding are given by evaluating the corresponding prediction-error variance and the associated cutoff rate, respectively. The results from information theory are well confirmed by simulation results presented for different channel scenarios.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have