Abstract

BackgroundConsuming a fructose-rich diet leads to hyperinsulinemia, impaired glucose tolerance, and insulin resistance. In humans, the consumption of high levels of refined sugars often coincides with a diet containing suboptimal levels of calcium. Calcium and carbohydrate metabolism interact, so there is potential for fructose to have different health outcomes depending on whether the diet is calcium-rich or calcium-poor.MethodsWe evaluated the metabolic effects of feeding fructose to rats that were maintained on either a calcium-replete diet or a low-calcium diet. Growing male Sprague Dawley rats were fed diets based on the AIN-93G formulation, with the main source of carbohydrate derived either from a mixture of cornstarch and sucrose or from fructose. Half the rats given each carbohydrate source were fed calcium at recommended levels (125 mmol/kg Ca2+); the others were fed a diet low in calcium (25 mmol/kg Ca2+). At various times, glucose and insulin tolerance tests were conducted to assess glucose metabolism.ResultsRats fed low-calcium diet had lower fasting insulin levels irrespective of the carbohydrate source they ate. They had a normal glycemic response to a glucose load and did not develop hyperinsulinemia under conditions of fructose feeding. The drop in blood glucose levels in response to insulin injection was larger in rats fed low-calcium diet than in those fed calcium-replete diet.ConclusionsLow-calcium diet prevented fructose-induced hyperinsulinemia and improved glucose handling under conditions of fructose feeding. Potential mechanisms underlying these effects of the low-calcium diet remain to be determined, but possibilities include impairment of insulin release from the pancreas and improved peripheral insulin sensitivity.

Highlights

  • Consuming a fructose-rich diet leads to hyperinsulinemia, impaired glucose tolerance, and insulin resistance

  • We investigated whether the combination of a highfructose diet along with marginally inadequate calcium might have combined detrimental influences on glucose metabolism

  • Calcium × Time, F (5,330) = 4.1, p ≤ 0.05; Fig. 1b): In all four groups, the proportion of body fat fell from Week 1 to Week 2, but in rats fed the calcium-replete diets the proportion of body fat increased significantly between

Read more

Summary

Introduction

Consuming a fructose-rich diet leads to hyperinsulinemia, impaired glucose tolerance, and insulin resistance. The consumption of high levels of refined sugars often coincides with a diet containing suboptimal levels of calcium. Calcium and carbohydrate metabolism interact, so there is potential for fructose to have different health outcomes depending on whether the diet is calcium-rich or calcium-poor. The drive for energy-dense foods often leads to diets high in sugary drinks and snacks, resulting in high intakes of refined sugars and suboptimal intakes of micronutrients, such as calcium. Diets rich in fructose induce impaired glucose tolerance accompanied by insulin resistance and hyperinsulinemia [8]. The mechanism underlying fructose-induced metabolic syndrome is complex. It is most likely initiated when fructose induces sustained hepatic gluconeogenesis and lipogenesis, because it bypasses the major regulatory steps

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.