Abstract

SummaryAS160 has emerged as a key player in insulin-mediated glucose transport through controlling GLUT4 trafficking, which is thought to be regulated by insulin-stimulated phosphorylation of sites including the 14-3-3 binding phospho-Thr649 (equivalent to Thr642 in human AS160). To define physiological roles of AS160-Thr649 phosphorylation and 14-3-3 binding in glucose homeostasis, we substituted this residue by a nonphosphorylatable alanine by knockin mutation in mice. The mutant protein was expressed at normal levels, while insulin-stimulated AS160 binding to 14-3-3s was abolished in homozygous knockin mice. These animals displayed impaired glucose disposal and insulin sensitivity, which were associated with decreased glucose uptake in vivo. Insulin-stimulated glucose transport and cell surface GLUT4 content were reduced in isolated muscles, but not in adipocytes. These results provide genetic evidence that insulin-induced AS160-Thr649 phosphorylation and/or its binding to 14-3-3 play an important role in regulating whole-body glucose homeostasis, at least in part through regulating GLUT4 trafficking in muscle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.