Abstract
Analytical frequency-domain expressions for single and coupled transmission lines with triangular input waveforms are first developed. The inverse Fourier transform is then used to obtain an expression for the time-domain triangle impulse responses for frequency-independent transmission line parameters. The integral associated with the inverse Fourier transform is solved analytically using a differential-equation-based technique. Closed-form expressions for the triangle impulse responses are given in the form of incomplete Lipschitz-Hankel integrals (ILHI) of the first kind. The ILHI can be efficiently calculated using existing algorithms. Combining these closed-form expressions for the triangle impulse responses with a time-domain convolution method using a triangle impulse as a basis function, provides an accurate and efficient simulation method for very lossy transmission lines embedded within linear and nonlinear circuits.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have