Abstract

We present a theoretical framework for the analysis of the statistical properties of thermal fluctuations on a lossy transmission line. A quantization scheme of the electrical signals in the transmission line is formulated. We discuss two applications in detail. Noise spectra at finite temperature for voltage and current are shown to deviate significantly from the Johnson-Nyquist limit, and they depend on the position on the transmission line. We analyze the spontaneous emission, at low temperature, of a Rydberg atom and its resonant enhancement due to vacuum fluctuations in a capacitively coupled transmission line. The theory can also be applied to study the performance of microscale and nanoscale devices, including high-resolution sensors and quantum information processors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.