Abstract

Chronic inflammation in adipose tissue contributes to obesity-related insulin resistance. The 3-phosphoinositide-dependent protein kinase 1 (Pdk1)/forkhead transcription factor (Foxo1) pathway is important in regulating glucose and energy homeostasis, but little is known about this pathway in adipose tissue macrophages (ATMs). To investigate this, we generated transgenic mice that carried macrophage/granulocyte-specific mutations, including a Pdk1 knockout (LysMPdk1−/−), a Pdk1 knockout with transactivation-defective Foxo1 (Δ256LysMPdk1−/−), a constitutively active nuclear (CN) Foxo1 (CNFoxo1LysM), or a transactivation-defective Foxo1 (Δ256Foxo1LysM). We analyzed glucose metabolism and gene expression in ATM populations isolated with fluorescence-activated cell sorting. The LysMPdk1−/− mice exhibited elevated M1 macrophages in adipose tissue and insulin resistance. Overexpression of transactivation-defective Foxo1 rescued these phenotypes. CNFoxo1LysM promoted transcription of the C-C motif chemokine receptor 2 (Ccr2) in ATMs and increased M1 macrophages in adipose tissue. On a high-fat diet, CNFoxo1LysM mice exhibited insulin resistance. Pdk1 deletion or Foxo1 activation in bone marrow–derived macrophages abolished insulin and interleukin-4 induction of genes involved in alternative macrophage activation. Thus, Pdk1 regulated macrophage infiltration by inhibiting Foxo1-induced Ccr2 expression. This shows that the macrophage Pdk1/Foxo1 pathway is important in regulating insulin sensitivity in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.