Abstract

Obesity, and more specifically accumulation of adipose tissue in the visceral and subcutaneous abdominal locations, is a major risk factor for the development of cardiovascular pathologies including hypertension and atherosclerosis, as well as metabolic disorders such as type 2 diabetes. During recent years, “metaflammation” or metabolically-triggered inflammation1 has emerged as a key process involved in the clustering of those conditions. Although several metabolically active organs such as the liver, muscle, and, recently, the intestine2 certainly play major roles, the white adipose tissue appears as a central and primary player as both a source and site of inflammation. Accumulation of adipose tissue macrophages (ATMs) has been well-described in obese conditions in mice and humans.3–5 Moreover, the ATM proinflammatory phenotype has been linked to the development of insulin resistance in mice,4 although the exact nature of the proinflammatory myeloid cells, ie, macrophages or dentritic cells, remains to be determined.6 Nevertheless, the causal link between inflammation and insulin resistance was further strengthened by the specific knock-out of the inflammation coordinator IkappaB kinase beta of myeloid cells, which gave protection against insulin resistance.7 The study of Kintscher and al in this issue8 extends those original observations to cells of adaptative immunity. The authors suggest that the accumulation of T-lymphocytes, assessed mainly through gene expression analyses and immunohistochemistry, occurs in the perigonadal adipose tissue of mice on …

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call