Abstract

A collisional gyro-fluid model is presented. The goal of the model is edge and scrape-off layer turbulence. The emphasize in the model derivation heavily lies on ”implementability” with today’s numerical methods. This translates to an avoidance of infinite sums, strongly coupled equations in time and intricate elliptic operator functions. The resulting model contains the four moments density, parallel momentum, perpendicular pressure and parallel energy and is closed by a polarisation equation and parallel Ampere law. The central ingredient is a collisional long-wavelength closure that relies on a drift-fluid gyro-fluid correspondence principle. In this way the extensive literature on fluid collisions can be incorporated into the model including sources, plasma-neutral interactions and scattering collisions. Even though this disregards the characteristic finite Larmor radius terms in the collisional terms the resulting model is at least as accurate as the corresponding drift-fluid model in these terms. Furthermore, the model does enjoy the benefits of an underlying variational principle in an energy-momentum theorem and an inherent symmetry in moment equations with regards to multiple ion species. Consistent particle drifts as well as finite Larmor radius corrections and high amplitude effects in the advection and polarization terms are further characteristics of the model. Extensions and improvements like short-wavelength expressions, a trans-collisional closure scheme for the low-collisionality regime or zeroth order potential must be added at a later stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call