Abstract

A linear analysis of the combined effect of viscosity, finite ion Larmor radius and suspended particles on Kelvin-Helmholtz instability of two superposed incompressible fluids in the presence of a uniform magnetic field is carried out. The magnetic field is assumed to be transverse to the direction of streaming. A general dispersion relation for such a configuration has been obtained using appropriate boundary conditions. The stability analysis is discussed analytically, and the obtained results are numerically confirmed. Some special cases are recovered and corrected. The limiting cases of absence of suspended particles (or fluid velocities) and finite Larmor radius, absence of suspended particles are discussed in detail. In both cases, all other physical parameters are found to have stabilizing as well as destabilizing effects on the considered system. In the former case, the kinematic viscosity is found to has a stabilizing effect, while in the later case, the finite Larmor radius is found to has a stabilizing influence for a vortex sheet. It is shown also that both finite Larmor radius and kinematic viscosity stabilizations for interchange perturbations are similar to the stabilization effect due to a magnetic field for non-interchange perturbations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call