Abstract
Background: In recent years, mesenchymal stem cells have gained attention in the field of regenerative medicine. While mesenchymal stem cells derived from adipose tissue and bone marrow are well-studied, obtaining sufficient tissue from neonates or infants poses significant challenges. Umbilical cord-derived mesenchymal stem cells are a promising alternative source, as they can be harvested non-invasively and in large quantities with minimal ethical concerns. This study aims to evaluate the safety of long-term cryopreserved umbilical cord-derived mesenchymal stem cells and explore their potential for clinical applications in regenerative medicine. Methods: Umbilical cord-derived mesenchymal stem cells were cryopreserved for periods ranging from 4 years and 5 months to 5 years and 9 months. After thawing, the following assessments were performed: Morphological changes: Cell morphology was observed under a light microscope before and after cryopreservation. Multipotency evaluation: Osteogenic and adipogenic differentiation potentials were assessed to confirm MSC characteristics. Chromosomal stability: G-band staining and Spectral Karyotyping were used to identify numerical and structural chromosomal abnormalities. Tumorigenic potential: Real-time PCR was conducted to measure the expression of telomerase reverse transcriptase, a tumorigenic marker. Results: No significant morphological differences were observed before and after cryopreservation. Both osteogenic and adipogenic differentiation potentials were maintained, confirming the multipotency of the cells. Chromosomal abnormalities were found in 4 out of 168 cells using G-banding, but no abnormalities were detected with Spectral Karyotyping. Telomerase reverse transcriptase gene expression was low, indicating a low risk of tumorigenicity. Conclusion: Long-term cryopreserved umbilical cord-derived mesenchymal stem cells maintain their safety in terms of morphology and function, showing promise as autologous graft material for regenerative medicine. However, further safety evaluations, particularly concerning chromosomal abnormalities, are essential before clinical application.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have