Abstract
Deep venous thrombosis (DVT) therapy during pregnancy warrants special consideration for the woman and the fetus. This study aimed to evaluate the impact of umbilical cord-derived mesenchymal stem cells (UC-MSCs) and bone marrow-derived mesenchymal stem cells (BM-MSCs) in terms of pro-angiogenic capacity and amelioration of pregnancy outcomes. The pregnant DVT rat model was successfully established by the "stenosis" method. Three consecutive injections of both UC-MSCs and BM-MSCs improved angiogenesis and ameliorated the embryo absorption rate in pregnant SD rats with DVT, in which UC-MSCs promoted angiogenesis more significantly. Furthermore, the levels of serum vascular endothelial growth factor-A (VEGF-A) and epidermal growth factor (EGF) were significantly higher in the UC-MSC group compared to those of the BM-MSC group. Thereafter, differentially expressed genes (DEGs) in thrombosed inferior vena cava tissues in the UC-MSC and BM-MSC groups were identified using transcriptome sequencing and further assessed by RT-qPCR and western blotting. The bioinformatics analysis indicated that the enriched DEG terms occurred in the cytokine activity, and the DEG pathways were significantly enriched in the cytokine-cytokine receptor interaction. In addition, both the mRNA and protein levels of angiogenic genes and their receptors, including VEGF-A, VEGF receptor-1, EGF, and EGF receptor, were significantly higher in the UC-MSC group. In conclusion, the BM-MSCs and UC-MSCs both significantly stimulate angiogenesis and ameliorate the embryo absorption rate in pregnant SD rats with DVT, but the difference in cytokine secretion causes UC-MSCs to have more potent angiogenic effects than BM-MSCs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have