Abstract
We introduce an adiabatic long-range quantum communication proposal based on a quantum dot array. By adiabatically varying the external gate voltage applied on the system, the quantum information encoded in the electron can be transported from one end dot to another. We numerically solve the Schr\"odinger equation for a system with a given number of quantum dots. It is shown that this scheme is a simple and efficient protocol to coherently manipulate the population transfer under suitable gate pulses. The dependence of the energy gap and the transfer time on system parameters is analyzed and shown numerically. We also investigate the adiabatic passage in a more realistic system in the presence of inevitable fabrication imperfections. This method provides guidance for future realizations of adiabatic quantum state transfer in experiments.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have