Abstract
We introduce a scheme based on adiabatic passage that allows for long-range quantum communication through tight-binding chain with always-on interaction. By adiabatically varying the external gate voltage applied on the system, the electron can be transported from the sender's dot to the aim one.We numerically solve the Schr\"odinger equation for a system with a given number of quantum dots. It is shown that this scheme is a simple and efficient protocol to coherently manipulate the population transfer under suitable gate pulses. The dependence of the energy gap and the transfer time on system parameters is analyzed and shown numerically. Our method provides a guidance for future realization of adiabatic quantum state transfer in experiments.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have