Abstract
The beta distribution is a two-parameter family of probability distributions whose distribution function is the (regularised) incomplete beta function. In this paper, the inverse incomplete beta function is studied analytically as a univariate function of the first parameter. Monotonicity, limit results and convexity properties are provided. In particular, logarithmic concavity of the inverse incomplete beta function is established. In addition, we provide monotonicity results on inverses of a larger class of parametrised distributions that may be of independent interest.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have