Abstract
Abstract In this paper, we reconstruct the gamma and beta functions using a general kernel function in their integral representations. We also reconstruct the Gauss and confluent hypergeometric functions using the beta function with general kernel in their series representations. The general kernel function we use here can be chosen as any special function such as exponential function, Mittag-Leffler function, Wright function, Fox-Wright function, Kummer function or M-series. Using different choices of this general kernel function, various of the generalized gamma, beta, Gauss hypergeometric and confluent hypergeometric functions in the literature can be obtained. In this paper, we first obtain the integral representations, functional relations, summation, derivative and transformation formulas and double Laplace transforms of the special functions we construct. Furthermore, we compute the solutions of some fractional partial differential equations involving special functions with general kernel via the double Laplace transform and graph some of the solutions for specific values. Finally, we obtain the incomplete beta function with general kernel by defining the beta distribution with general kernel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Mathematics and Computer in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.