Abstract
Carrier transport properties of solution processed ultra thin (4 nm) zinc-tin oxide (ZTO) thin film transistor are investigated based on its transfer characteristics measured at the temperature ranging from 310 K to 77 K. As temperature decreases, the transfer curves show a parellel shift toward more postive voltages. The conduction mechanism of ultra-thin ZTO film and its connection to the density of band tail states have been substantiated by two approaches, including fitting logarithm drain current (log ID) to T−1/3 at 310 K to 77 K according to the two-dimensional Mott variable range hopping theory and the extraction of density of localized tail states through the energy distribution of trapped carrier density. The linear dependency of log ID vs. T−1/3 indicates that the dominant carrier transport mechanism in ZTO is the variable range hopping. The extracted value of density of tail states at the conduction band minimum is 4.75 × 1020 cm−3 eV−1 through the energy distribution of trapped carrier density. The high density of localized tail states in the ultra thin ZTO film is the key factor leading to the room-temperature hopping transport of carriers among localized tail states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.