Abstract

We report on a first-principles study of all the structurally different stacking faults that can be introduced by glide along the (0001) basal plane in 3C-, 4H-, and 6H-SiC based on the local-density approximation within the density-functional theory. Our band-structure calculations have revealed that both types of stacking faults in 4H-SiC and two of the three different types of stacking faults in 6H-SiC give rise to quasi-two-dimensional energy band states in the band gap at around 0.2 eV below the lowest conduction band, thus being electrically active in n-type material. Although stacking faults, unlike point defects and surfaces, are not associated with broken or chemically perturbed bonds, we find a strong localization, within roughly 10--15 \AA{} perpendicular to the stacking fault plane, of the stacking fault gap state wave functions. We find that this quantum-well-like feature of certain stacking faults in SiC can be understood in terms of the large conduction-band offsets between the cubic and hexagonal polytypes. Recent experimental results give qualitative support to our results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call