Abstract

The wave propagation problems addressed in this paper involve a relatively large and impenetrable surface on which is posed a comparatively small penetrable heterogeneous material. Typically the numerical solution of such kinds of problems is solved by coupling boundary and finite element methods. However, a straightforward application of this technique gives rise to some difficulties which mainly are related to the solution of a large linear system whose matrix consists of sparse and dense blocks. To face such difficulties, the adaptive radiation condition technique is modified by localizing the truncation interface only around the heterogeneous material. Stability and error estimates are established for the underlying approximation scheme. Some alternative methods are recalled or designed making it possible to compare the numerical efficiency of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.