Abstract

Abstract We consider additive Schwarz methods for boundary value problems involving the $p$-Laplacian. While existing theoretical estimates suggest a sublinear convergence rate for these methods, empirical evidence from numerical experiments demonstrates a linear convergence rate. In this paper we narrow the gap between these theoretical and empirical results by presenting a novel convergence analysis. First, we present a new convergence theory for additive Schwarz methods written in terms of a quasi-norm. This quasi-norm exhibits behaviour akin to the Bregman distance of the convex energy functional associated with the problem. Secondly, we provide a quasi-norm version of the Poincaré–Friedrichs inequality, which plays a crucial role in deriving a quasi-norm stable decomposition for a two-level domain decomposition setting. By utilizing these key elements we establish the asymptotic linear convergence of additive Schwarz methods for the $p$-Laplacian.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.