Abstract

We investigate the oblique incidence of transverse waves on a randomly layered medium in the limit of strong disorder. An approximate method for calculating the inverse localization length based on the assumptions of zero energy flux and complete phase stochastization is presented. Two effects not found at normal incidence have been studied: dependence of the localization length on the polarization, and decrease of the localization length due to the internal reflections from layers with small refractive indexes. The inverse localization length (attenuation rate) for P-polarized radiation is shown to be always smaller than that of S-waves, which is to say that long enough randomly layered sample polarizes transmitted radiation. The localization length for P-polarization depends non-monotonically on the angle of propagation, and under certain conditions turns to infinity at some angle, which means that typical (non-resonant) random realizations become transparent at this angle of incidence (stochastic Brewster effect).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.