Abstract

We study Anderson localization of massless Dirac electrons in two dimensions in one-dimensional random scalar and vector potentials theoretically for two different cases, in which the scalar and vector potentials are either uncorrelated or correlated. From the Dirac equation, we deduce the effective wave impedance, using which we derive the condition for total transmission and those for delocalization in our random models analytically. Based on the invariant imbedding theory, we also develop a numerical method to calculate the localization length exactly for arbitrary strengths of disorder. In addition, we derive analytical expressions for the localization length, which are extremely accurate in the weak and strong disorder limits. In the presence of both scalar and vector potentials, the conditions for total transmission and complete delocalization are generalized from the usual Klein tunneling case. We find that the incident angles at which electron waves are either completely transmitted or delocalized can be tuned to arbitrary values. When the strength of scalar potential disorder increases to infinity, the localization length also increases to infinity, both in uncorrelated and correlated cases. The detailed dependencies of the localization length on incident angle, disorder strength and energy are elucidated and the discrepancies with previous studies and some new results are discussed. All the results are explained intuitively using the concept of wave impedance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.