Abstract
Gonadotropin-releasing hormone (GnRH) is a neurohormone crucial for the regulation of reproductive and neural functions in vertebrates. Recent discoveries of GnRH immunoreactivity (IR) in a number of invertebrates raised the possibility that GnRH may be an ancient molecule that had arisen before the emergence of Phylum Chordata. We previously demonstrated the presence of a GnRH IR similar to the mammalian (m) and tunicate I (tI) forms of GnRH in the hemolymph and ovotestis of an opisthobranch mollusk, Aplysia californica; however, the presence of GnRH in the central nervous system (CNS) of A. californica could not be detected with the available antisera against various forms of chordate GnRH. In the present study, we performed immunohistochemistry (IHC) to localize the presence of GnRH in the CNS and a peripheral chemosensory organ, the osphradium, of A. californica. A newly generated antiserum against tI-GnRH revealed the strong expression of GnRH IR in neurons of all CNS ganglia. A notable asymmetry in immunostaining was detected in the left and right abdominal hemiganglia. The CNS is rich in tI-GnRH immunoreactive neurons but lacks mGnRH IR, whereas the osphradium contains abundant mGnRH immunoreactive neurons but lacks tI-GnRH IR. The extract of CNS failed to stimulate the release of LH from mouse pituitary, demonstrating that the A. californica GnRH IR is structurally different from what is required to bind and activate mammalian GnRH receptor. Together, these results indicate the presence of at least two distinct GnRH systems in A. californica. The presence of GnRH in the osphradium is consistent with the long-standing anatomical relationship between GnRH and the chemosensory system observed in vertebrates.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have