Abstract
The wave localization in randomly disordered periodic multi-span continuous beams is studied. The transfer matrix method is used to deduce transfer matrices of two kinds of multi-span beams. To calculate the Lyapunov exponents in discrete dynamical systems, the algorithm for determining all the Lyapunov exponents in continuous dynamical systems presented by Wolf et al is employed. The smallest positive Lyapunov exponent of the corresponding discrete dynamical system is called the localization factor, which characterizes the average exponential rates of growth or decay of wave amplitudes along the randomly mistuned multi-span beams. For two kinds of disordered periodic multi-span beams, numerical results of localization factors are given. The effects of the disorder of span-length, the non-dimensional torsional spring stiffness and the non-dimensional linear spring stiffness on the wave localization are analysed and discussed. It can be observed that the localization factors increase with the increase of the coefficient of variation of random span-length and the degree of localization for wave amplitudes increases as the torsional spring stiffness and the linear spring stiffness increase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.