Abstract

It is well known that, if the initial conditions have sufficiently high energy density, the dynamics of the classical Discrete Non-Linear Schr\"odinger Equation (DNLSE) on a lattice shows a form of breaking of ergodicity, with a finite fraction of the total charge accumulating on a few sites and residing there for times that diverge quickly in the thermodynamic limit. In this paper we show that this kind of localization can be attributed to some geometric properties of the microcanonical potential energy surface, and that it can be associated to a phase transition in the lowest eigenvalue of the Laplacian on said surface. We also show that the approximation of considering the phase space motion on the potential energy surface only, with effective decoupling of the potential and kinetic partition functions, is justified in the large connectivity limit, or fully connected model. In this model we further observe a synchronization transition, with a synchronized phase at low temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.