Abstract

This article establishes explicit non-asymptotic ergodic bounds in the renormalized Wasserstein–Kantorovich–Rubinstein (WKR) distance for a viscous energy shell lattice model of turbulence with random energy injection. The system under consideration is driven either by a Brownian motion, a symmetric α\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha $$\\end{document}-stable Lévy process, a stationary Gaussian or α\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha $$\\end{document}-stable Ornstein–Uhlenbeck process, or by a general Lévy process with second moments. The obtained non-asymptotic bounds establish asymptotically abrupt thermalization. The analysis is based on the explicit representation of the solution of the system in terms of convolutions of Bessel functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.