Abstract
In the first two sections of this chapter, we focus our attention on two special classes of rings, namely, local rings and semilocal rings. By definition, a ring R is local if R/rad R is a division ring, and R is semilocal if R/rad R is a semisimple ring. Thus, local rings include all division rings, and semilocal rings include all left or right artinian rings. The basic properties of local and semilocal rings are developed, respectively, in §19 and §20. We shall see, for instance, that local rings are connected with the problem of the uniqueness of Krull-Schmidt decompositions, and that semilocal rings are connected with the problem of “cancellation” of modules.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have