Abstract
In [1] we introduced the concept of a non-commutative local ring and studied the structure of such rings. Unfortunately, we were not able to show that the completion of a local ring was a semi-local ring. In this paper we propose to study a class of rings for which the above result is valid. This class of rings is the integral extensions -[4, 5]-of commutative local rings. This class of rings includes the important class of matrix rings over commutative local rings. In part 1 below we study some elementary properties of integral extensions and here we assume merely that the underlying ring is semi-local. In part 2 we discuss some questions of ideal theory for arbitrary local rings as well as for integral extensions. In a later paper we propose to utilize our results to study the deeper properties of these rings including a dimension theory for such rings. We are particularly indebted to the work of Nagata [6, 7, 8, 9] in the preparation of this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.