Abstract

Entanglement and information are powerful lenses to probe phases transitions in many-body systems. Motivated by recent cold atom experiments, which are now able to measure the corresponding information-theoretic quantities, we study the Mott transition in the half-filled two-dimensional Hubbard model using cellular dynamical mean-field theory, and focus on two key measures of quantum correlations: entanglement entropy and a measure of total mutual information. We show that they detect the first-order nature of the transition, the universality class of the end point, and the crossover emanating from the end point.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call