Abstract

AbstractNi‐based electrocatalysts are considered to be significantly promising candidates for electrocatalytic urea oxidation reaction (UOR). However, their UOR activity and stability are severely enslaved by the inevitable Ni group self‐oxidation phenomenon. In this study, the glassy state NiFe LDH with uniform Cu dopant (Cu‐NiFe LDH) by a simple sol–gel strategy is successfully synthesized. When served as the UOR catalyst, Cu‐NiFe LDH required a 123 mV lower potential for UOR at both 10 and 100 mA cm−2 in comparison with the conventional anodic OER. It can also operate steadily for more than 300 h at 10 mA cm−2. The in‐depth investigation reveals that Cu incorporation can optimize the local electronic structure of Ni species to induce high‐valent Ni sites. The high‐valent Ni sites would act as the active center during the proposed energetically favorable UOR route, which directly reacts on the high‐valent Ni sites without self‐oxidation inducing the formation of NiOOH species, resulting in a boosted electrocatalytic UOR activity and stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.