Abstract
Direct urea fuel cell (DUFC) and overall urea splitting system have attracted considerable attention as promising choice for energy conversion. Whereas, the anodic half reaction of electrocatalytic urea oxidation reaction (UOR) in these systems awfully limited their practical application due to the complex 6-electron transfer process. Herein, vanadium doped nickel (V-Ni(OH)2) with highly efficient electrocatalytic activity toward UOR was developed by a simple coprecipitation method. The introducing of V not only promotes the phase transforming from inactive β-Ni(OH)2 to highly active α-Ni(OH)2, but also simultaneously modulates the electron environment of Ni, facilitating high valence species Ni3+ generation in low overpotential, enhancing the electrocatalytic activity potent of each Ni3+ site and speeding up the electrocatalytic reaction. The optimal V-Ni(OH)2 catalyst exhibits a summit current density of 241 mA cm−2 at 1.6 V vs. RHE, a Tafel slope of 32.15 mV dec-1, outperforming β-Ni(OH)2 and most catalysts that tested on glassy carbon electrode. Furthermore, the assembled direct urea hydrogen peroxide fuel cell (DUPFC) offers a maximum power density of 13.4 mW cm−2 at 20 °C. This work provides an example of combing phase-regulation and electron modulation method for effective UOR electrocatalysts design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.