Abstract
Local and parallel finite element algorithms based on two-grid discretization for Navier-Stokes equations in two dimension are presented. Its basis is a coarse finite element space on the global domain and a fine finite element space on the subdomain. The local algorithm consists of finding a solution for a given nonlinear problem in the coarse finite element space and a solution for a linear problem in the fine finite element space, then droping the coarse solution of the region near the boundary. By overlapping domain decomposition, the parallel algorithms are obtained. This paper analyzes the error of these algorithms and gets some error estimates which are better than those of the standard finite element method. The numerical experiments are given too. By analyzing and comparing these results, it is shown that these algorithms are correct and high efficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.