Abstract

ABSTRACTWe propose a multigrid correction scheme to solve a new Steklov eigenvalue problem in inverse scattering. With this scheme, solving an eigenvalue problem in a fine finite element space is reduced to solve a series of boundary value problems in fine finite element spaces and a series of eigenvalue problems in the coarsest finite element space. And the coefficient matrices associated with those linear systems are constructed to be symmetric and positive definite. We prove error estimates of eigenvalues and eigenfunctions. Numerical results coincide in theoretical analysis and indicate our scheme is highly efficient in solving the eigenvalue problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.