Abstract

In this paper, we propose and analyze a two-grid finite element method for a class of quasilinear elliptic problems under minimal regularity of data in a bounded convex polygonal Ω⊂R2, which can be thought of as a type of linearization of the nonlinear system using a solution from a coarse finite element space. With this technique, solving a quasilinear elliptic problem on the fine finite element space is reduced into solving a linear problem on the fine finite element space and solving the quasilinear elliptic problem on a coarse space. Convergence estimates in the H1-norm are derived to justify the efficiency of the proposed two-grid algorithm. Moreover, we propose a natural and computationally efficient residual-based a posteriori error estimator of the two-grid finite element method for this nonmonotone quasilinear elliptic problem and derive the global upper and lower bounds on the error in the H1-norm. Numerical experiments are provided to confirm our theoretical findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.