Abstract

Precise cancer classification is essential to the successful diagnosis and treatment of cancers. Although semisupervised dimensionality reduction approaches perform very well on clean datasets, the topology of the neighborhood constructed with most existing approaches is unstable in the presence of high-dimensional data with noise. In order to solve this problem, a novel local and global preserving semisupervised dimensionality reduction based on random subspace algorithm marked as RSLGSSDR, which utilizes random subspace for semisupervised dimensionality reduction, is proposed. The algorithm first designs multiple diverse graphs on different random subspace of datasets and then fuses these graphs into a mixture graph on which dimensionality reduction is performed. As themixture graph is constructed in lower dimensionality, it can ease the issues on graph construction on highdimensional samples such that it can hold complicated geometric distribution of datasets as the diversity of random subspaces. Experimental results on public gene expression datasets demonstrate that the proposed RSLGSSDR not only has superior recognition performance to competitive methods, but also is robust against a wide range of values of input parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call