Abstract

Graph structure is vital to graph based semi-supervised learning. However, the problem of constructing a graph that reflects the underlying data distribution has been seldom investigated in semi-supervised learning, especially for high dimensional data. In this paper, we focus on graph construction for semi-supervised learning and propose a novel method called Semi-Supervised Classification based on Random Subspace Dimensionality Reduction, SSC-RSDR in short. Different from traditional methods that perform graph-based dimensionality reduction and classification in the original space, SSC-RSDR performs these tasks in subspaces. More specifically, SSC-RSDR generates several random subspaces of the original space and applies graph-based semi-supervised dimensionality reduction in these random subspaces. It then constructs graphs in these processed random subspaces and trains semi-supervised classifiers on the graphs. Finally, it combines the resulting base classifiers into an ensemble classifier. Experimental results on face recognition tasks demonstrate that SSC-RSDR not only has superior recognition performance with respect to competitive methods, but also is robust against a wide range of values of input parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.