Abstract

Semi-supervised dimensionality reduction is becoming one of the most popular fields nowadays. But the existing algorithms can not fully utilize the information in dimensionality reduction as the side information is treated equally. A new semi-supervised dimensionality reduction algorithm called Geodesic distance based semi-supervised locality dimensionality reduction (GSLDR) is proposed for the handwriting data to overcome the shortcomings. Since Euclidean distance cannot really reflect the structure of data, we adopt geodesic distance as the measurement. Then the algorithm expands the pairwise constraints to strengthen the guiding role of the constraints in dimensionality reduction, and add the constraints to the nearest neighbor graph to make the graph reflect realistic manifold structure of the data. At last, the proposed method is applied to the writer identification. The experimental results on datasets show the effectiveness of the algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.