Abstract

BackgroundPancreatic ductal adenocarcinoma (PDAC), a subtype of pancreatic cancer, is a malignant tumor with unfavorable prognosis. Despite accumulating researches have made efforts on finding novel therapeutic methods for this disease, the underlying mechanism of long non-coding RNAs (lncRNAs) remains elusive. OIP5 antisense RNA 1 (OIP5-AS1) has been reported to play important role in the occurrence and development of multiple human cancers. This study was aimed at unveiling the regulatory role of OIP5-AS1 in PDAC.MethodsRT-qPCR analysis revealed the OIP5-AS1 expression in PDAC tissues and adjacent normal ones. Kaplan–Meier method was applied to analyze the overall survival of patients with high or low level of OIP5-AS1. Gain- or loss-of function assays were performed to assess the effects of OIP5-AS1 knockdown on cell functions, including proliferation, migration and EMT process. Mechanism experiments, such as luciferase reporter and RNA pull-down assays proved the interaction between OIP5-AS1 and miR-429 as well as that between miR-429 and FOXD1.ResultsOIP5-AS1 was up-regulated in PDAC tissues and cell lines, and high level of OIP5-AS1 indicated poor prognosis in PDAC patients. OIP5-AS1 knockdown hindered cell proliferation, migration and epithelial-mesenchymal transition (EMT) process, while overexpression of OIP5-AS1 caused the opposite results. OIP5-AS1 activated ERK pathway through up-regulating forkhead box D1 (FOXD1) expression by sponging miR-429. Furthermore, OIP5-AS1 facilitated cell growth in vivo.ConclusionOIP5-AS1 exerted oncogenic function in PDAC cells through targeting miR-429/FOXD1/ERK pathway.

Highlights

  • Pancreatic ductal adenocarcinoma (PDAC), a subtype of pancreatic cancer, is a malignant tumor with unfavorable prognosis

  • OIP5‐AS1 is up‐regulated in PDAC tissues and predicts poor prognosis of PDAC patients At first, high level of OIP5-AS1 in TCGA PAAD samples was obtained from GEPIA (Additional file 1: Fig. S1A)

  • We observed remarkable the upregulation of OIP5-AS1 in PDAC tissues compared to adjacent normal ones (Fig. 1a)

Read more

Summary

Introduction

Pancreatic ductal adenocarcinoma (PDAC), a subtype of pancreatic cancer, is a malignant tumor with unfavorable prognosis. Despite accumulating researches have made efforts on finding novel therapeutic methods for this disease, the underlying mechanism of long non-coding RNAs (lncRNAs) remains elusive. OIP5 antisense RNA 1 (OIP5-AS1) has been reported to play important role in the occurrence and development of multiple human cancers. This study was aimed at unveiling the regulatory role of OIP5-AS1 in PDAC. Knockdown of lncRNA MEG3 increases cell proliferation, migration, invasion, sphere-formation ability and cancer stem cell properties in PDAC [11]. LncRNA OIP5-AS1 has been demonstrated to be dysregulated and promote tumorigenesis in diverse cancer types, including cervical cancer, lung cancer, hepatoblastoma and colorectal cancer [12,13,14,15]. The potential role of OIP5-AS1 in PDAC is still unclear

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call