Abstract

BackgroundPancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and resistance to cytotoxic chemotherapy is the major cause of mortality in PDAC patients. miR-125a-3p was found to be down-regulated in PDAC cells; however, the function of miR-125a-3p in PDAC has been elusive. Here, we explored the role of miR-125a-3p in chemosensitivity in PDAC cells. MethodsWe used qRT-PCR to detect miR-125a-3p expression in two PDAC cell lines. And we measured cell viability and apoptosis by MTT assay and flow cytometry, respectively. Scratch wound healing assay and transwell invasion assay were used to test the effects of miR-125a-3p and Fyn on cell EMT process. In addition, we validated the interaction of miR-125a-3p and Fyn by dual luciferase reporter assay. qRT-PCR and western blot were used to detect the mRNA and protein expressions of E-cadhrein, N-cadhrein, Snail and Fyn. ResultsWe found that miR-125a-3p was down-regulated in a time-dependent manner following treatment with gemcitabine in PDAC cells. Meanwhile, we found that overexpression of miR-125a-3p significantly increased chemosensitivity to gemcitabine and suppressed epithelial-mesenchymal transition (EMT) of PDAC cells. Mechanistically, miR-125a-3p directly targeted Fyn and decreased the expression of Fyn that functions to promote EMT process in PDAC. Furthermore, overexpression of Fyn could partially reverse the effects of miR-125a-3p on chemosensitivity to gemcitabine. ConclusionOur study is the first to show that miR-125a-3p is responsible for chemosensitivity in PDAC and could inhibit epithelial-mesenchymal transition by directly targeting Fyn. This provides a novel potential therapeutic strategy to overcome chemoresistance in PDAC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.