Abstract

Changes in livestock loads and eutrophication associated with human activities can modify the stability of grassland's aboveground net primary productivity (ANPP), by modifying the mean (μ) and/or standard deviation (σ) of ANPP. The changes in attributes of the plant community (i.e., species richness, species asynchrony, dominance) might in turn explain the ecosystem temporal (inter-annual) stability of grassland production. Here, we evaluated the interactive effects of changes in livestock loads and chronic nutrient addition on the temporal stability of ANPP (estimated as μ/σ) in temperate grasslands. We also assessed the role of different attributes of the plant community on ecosystem stability. We carried out a factorial experiment of domestic livestock exclusion and nutrient addition (10 g.m−2.year−1 of nitrogen, phosphorus, and potassium; n = 6 blocks) during five consecutive years in a natural grassland devoted to cattle production (Flooding Pampa, Argentina). Domestic livestock exclusion reduced ANPP stability by 65%, regardless of nutrient load, mainly by the increase of ANPP standard deviation. This reduction in ANPP stability after livestock exclusion was associated mostly with higher plant species dominance and also with reductions in plant effective richness and in the asynchrony of grassland's species. Despite not finding direct negative effects of eutrophication on ANPP stability, chronic nutrient addition decreased effective species richness and asynchrony, which may translate into reductions in ANPP stability in the future. Our findings highlight that the presence of livestock maintains the temporal stability of ANPP mainly by lowering the dominance of the plant community. However, increases in nutrient loads in grasslands devoted to livestock production may threaten grassland's stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call