Abstract

Mycorrhiza is an important functional feature of plants, which plays a vital role in regulating plant phenology in response to environmental changes. However, the effect of mycorrhiza on plant phenological asymmetry in response to climate changes is still rarely reported. Based on a global database of mycorrhizal statuses (obligately mycorrhizal, OM and facultatively mycorrhizal, FM) and phenology, we demonstrated that mycorrhizas reduce the phenological mismatches between above- and below-ground plant responses to climate warming under OM status. The mismatch of above- and below-ground growing season length of FM plants to warming was as high as 10.65 days, 9.1925 days and 12.36 days in total, herbaceous and woody plants, respectively. The mismatch of growing season length of OM plants was only 2.12 days, −0.61 days and 7.64 days among plant groups, which was much lower than that of FM plants. Correlation analysis indicated that OM plants stabilized plant phenology by regulating the relationship between the start of the growing season and the length of the growing season. Path analysis found that herbaceous plants and woody plants reduced phenological mismatches by stabilizing below-ground and above-ground phenology, respectively. In exploring the effects of mycorrhizal status on early- or late-season phenophases, we found that different mycorrhizal statuses affected the response of early- or late-season phenophase to warming. OM promoted the advance of early-season phenophase, and FM promoted the delay of late-season phenophase among different plant groups. In different regions, OM and FM promoted the advance of early-season phenophase in temperate and boreal regions, respectively. Our results indicate that mycorrhizal status mediates plant phenological response to warming, so the potential effects of mycorrhizal status should be considered when studying plant phenology changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.