Abstract

Recent rapid climatic changes are associated with dramatic changes in phenology of plants and animals, with optimal timing of reproduction advancing considerably in the northern hemisphere. However, some species may not have advanced their timing of breeding sufficiently to continue reproducing optimally relative to the occurrence of peak food availability, thus becoming mismatched compared with their food sources. The degree of mismatch may differ among species, and species with greater mismatch may be characterized by declining populations. Here we relate changes in spring migration timing by 100 European bird species since 1960, considered as an index of the phenological response of bird species to recent climate change, to their population trends. Species that declined in the period 1990-2000 did not advance their spring migration, whereas those with stable or increasing populations advanced their migration considerably. On the other hand, population trends during 1970-1990 were predicted by breeding habitat type, northernmost breeding latitude, and winter range (with species of agricultural habitat, breeding at northern latitudes, and wintering in Africa showing an unfavorable conservation status), but not by change in migration timing. The association between population trend in 1990-2000 and change in migration phenology was not confounded by any of the previously identified predictors of population trends in birds, or by similarity in phenotype among taxa due to common descent. Our findings imply that ecological factors affecting population trends can change over time and suggest that ongoing climatic changes will increasingly threaten vulnerable migratory bird species, augmenting their extinction risk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call