Abstract

Extreme droughts strongly impact grassland ecology, both functionally and structurally. However, a comprehensive understanding of the drought impacts on the ecosystem stability is critical for its sustainable development under changing climate. We experimentally report the impact of extreme drought on the temporal stability of aboveground net primary productivity (ANPP) and belowground net primary productivity (BNPP) in a desert steppe of northern China. The relative importance evaluation of extreme drought, soil properties, species asynchrony, taxonomic, functional, and phylogenetic diversity was performed using structural equation modeling (SEM) to measure the temporal ANPP and BNPP stabilities. Our findings suggested that extreme drought decreased BNPP stability but did not affect ANPP stability. Extreme drought reduced taxonomic and phylogenetic diversity, ANPP, and soil water content but did not affect species asynchrony, functional diversity, or BNPP. Species richness, Shannon-Wiener index, and soil water content were positively correlated with BNPP stability. The SEM results showed a drought-mediated indirect weakening of BNPP stability via modification of species richness. Asynchrony of species unrelated to drought, however, directly affected ANPP stability. The mechanisms underlying the response determination of ANPP and BNPP stability to extreme drought in desert steppe varied notably. Depending on the species asynchrony, ANPP reduced by extreme drought could maintain higher stability. However, extreme drought lowered BNPP stability by altering species richness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call