Abstract

Groundwater is a significant source of water supply, especially with depleted and quality-deteriorated surface water. The number of drilled boreholes for groundwater has been increased, but erroneous results often occur while selecting sites for digging boreholes. This makes it necessary to follow a science-based method indicating potential zones for groundwater storage. The LithoSFR Model is a systematic approach we built to create an indicative map with various categories for potential groundwater sites. It is based mainly on retrieved geospatial data from satellite images and from available thematic maps, plus borehole data. The geospatial data were systematically manipulated in a GIS with multi-criteria applications. The novelty of this model includes the empirical calculation of the level each controlling factor (i.e., weights and rates), as well as the LithoSFR Model, adopting new factors in its design. This study was applied on a representative Mediterranean region, i.e., Lebanon. Results showed that 44% of the studied region is characterized by a very high to high potentiality for groundwater storage, mainly in areas with fractured and karstified carbonate rocks. The obtained results from the produced map were compared with datasets which were surveyed from representative boreholes to identify the discharge in the dug boreholes, and then to compare them with the potential zones in the produced map The reliability of the produced map exceeded 87%, making it a significant tool to identify potential zones for groundwater investment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call