Abstract
Peak force infrared (PFIR) microscopy is an emerging atomic force microscopy that bypasses Abbe's diffraction limit in achieving chemical nanoimaging and spectroscopy. The PFIR microscopy mechanically detects the infrared photothermal responses in the dynamic tip-sample contact of peak force tapping mode and has been applied for a variety of samples, ranging from soft matters, photovoltaic heterojunctions, to polaritonic materials under the air conditions. In this article, we develop and demonstrate the PFIR microscopy in the liquid phase for soft matters and biological samples. With the capability of controlling fluid compositions on demand, the liquid-phase peak force infrared (LiPFIR) microscopy enables in situ tracking of the polymer surface reorganization in fluids and detecting the product of click chemical reaction in the aqueous phase. Both broadband spectroscopy and infrared imaging with ∼10 nm spatial resolution are benchmarked in the fluid phase, together with complementary mechanical information. We also demonstrate the LiPFIR microscopy on revealing the chemical composition of a budding site of yeast cell wall particles in water as an application on biological structures. The label-free, nondestructive chemical nanoimaging and spectroscopic capabilities of the LiPFIR microscopy will facilitate the investigations of soft matters and their transformations at the solid/liquid interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.