Abstract

Improving the lateral resolution is a key focus of the research on optical measuring systems to expand the fields of application for optical metrology. By means of microspheres put on an object in a microscope, and therefore used as a near-field support, it has already been shown that a superresolution of structures below Abbe's diffraction limit is possible. The following investigations give more detailed theoretical and experimental insight into the physical mechanisms responsible for the transition of near-field information to the far field. In particular, the effects of microspheres as near-field support on the behavior of phase-evaluating interference microscopes close to the optical resolution limit are studied experimentally as well as with numerical simulations. Special attention is drawn to measured data taken with a Linnik microscope of high numerical aperture. Finally, the measurement results of grating structures with a period below Abbe's diffraction limit are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.